4 research outputs found

    NrCAM, a neuronal system cell-adhesion molecule, is induced in papillary thyroid carcinomas

    Get PDF
    NrCAM (neuron-glia-related cell-adhesion molecule) is primarily, although not solely, expressed in the nervous system. In the present study, NrCAM expression was analysed in a series (46) of papillary thyroid carcinomas (PTCs) and paired normal tissues (NT). Quantitative reverse transcriptase (QRT)-PCR revealed that NrCAM expression was upregulated in all PTCs compared to normal thyroid, whatever the stage or size of the primary tumour. NrCAM transcript levels were 1.3- to 30.7-fold higher in PTCs than in NT. Immunohistochemistry (IHC) confirmed that the expression of NrCAM was considerably higher in tumours (score 2+/3+) than in adjacent normal paratumoural thyroid tissue. The NrCAM protein was detected in all but three (93.3%) PTC samples, and it was mainly cytoplasmic; in some cases there was additional membranous localisation – basolateral and partly apical. In the normal thyroid and tissues surrounding tumours, focal NrCAM immunolabelling was seen only in follicles containing tall cells, where staining was restricted to the apical pole of thyrocytes. Western blot analysis corroborated the QRT–PCR and IHC results, showing higher NrCAM protein levels in PTCs than in paired NT. The level of overexpression of the NrCAM mRNA in tumourous tissue appeared to be independent of the primary tumour stage (pT) or the size of the PTC. These data provide the first evidence that NrCAM is overexpressed in human PTCs at the mRNA and protein levels, whatever the tumour stage. Thus, the induction and upregulation of NrCAM expression could be implicated in the pathogenesis and behaviour of papillary thyroid cancers

    Expression of pendrin in benign and malignant human thyroid tissues

    Get PDF
    The Pendred syndrome gene (PDS) encodes a transmembrane protein, pendrin, which is expressed in follicular thyroid cells and participates in the apical iodide transport. Pendrin expression has been studied in various thyroid neoplasms by means of immunohistochemistry (IHC), Western blot and RT–quantitative real-time PCR. The expression was related to the functional activity of the thyroid tissue. Follicular cells of normal, nodular goitre and Graves' disease tissues express pendrin at the apical pole of the thyrocytes. In follicular adenomas, pendrin was detected in cell membranes and cytoplasm simultaneously in 10 out of 15 cases. Pendrin protein was detected in 73.3 and 76.7% of the follicular (FTC) and papillary (PTC) thyroid carcinomas, respectively, where pendrin was solely localised inside the cytoplasm. An extensive intracellular immunostaining of pendrin was observed in six out of 11 (54.5%) of positive FTCs and 19 out of 23 (82%) of PTCs. Focal reactivity was detected in one follicular- and three papillary carcinomas, whereas pendrin protein was absent in three of 15 FTC and four of 30 PTC; mRNA of pendrin was detected in 92.4% of thyroid tumours. The relative mRNA expression of pendrin was lower in cancers than in normal thyroid tissues (P<0.001). The pendrin protein level was found to parallel its mRNA expression, which was not, however, related to the tumour size and tumour stage. In conclusion, pendrin is expressed in the majority of differentiated thyroid tumours with high individual variability but its targeting to the apical cell membrane is affected
    corecore